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Abstract 

This paper deals with the localization and map building 
paradigm in an unknown indoor environment. We propose 
an exploration method based on the use of the sensorial 
data provided by an omnidirectional stereoscopic vision 
system. The first part of our study is linked with the 
problem of sensorial model construction with two 
omnidirectional images obtained by a rigid translation 
along a rail of our SYCLOP sensor. We propose an 
approach based on the fusion of several criteria which is 
realized according to Dempster-Shafer rules. The second 
part is devoted to the matching problem of the stereo 
sensorial model with an environment map integrating all 
the previous primitive observations. We propose two 
matching approaches based on different selection 
criterion: the Hausdorff distance and the cumulated 
cartesian distance. The third part presents our incremental 
map building paradigm based on the hypothesis of a non a 
priori knowledge. We deal with the problem wish consists 
in allowing a robot to localize itself and to construct 
concurrently a representation of its environment. In this 
part we discuss the problem of interaction between the 
localization stage and the mapping stage. 

 
I.Introduction 
 

The map building problem is preponderant for the 
increase of mobile robot autonomy [1] [2] [3]. It consists 
in managing a coherent representation of the environment 
along a robot’s displacement. The mapping stage is 
directly correlated to the localization stage: the coherence 
and the robustness of the map updating is linked to the 
robustness of the position estimation. For a dynamic map 
building it is necessary to localize the robot in relation 
with already known map elements. There are different 
types of maps mainly based on the nature of sensorial data 
and the representation requirements of localization. We 
can distinguished mainly two kinds of map representation: 
the metric approaches and the topological approaches. The 
first approach consists in managing the notion of distance. 
We can find mainly two types of mapping paradigm to 
take into account the notion of distance. The first paradigm 
consists in computing a cartesian representation of the 
environment which generally used the Extended Kalman 
filtering. This is mainly what Crowley has pointed out by 

using the Kalman Filtering technique to build the 
environment global map and to localize the robot [6]. The 
fusion of dead reckoning and ultrasonic data is thus 
realized. Kalman Filtering is also used by Leonard and 
Durrant-Whyte [5] to realize the dynamic building of the 
environment map with ultrasonic data. More recently, and 
linked to the previous works, the SLAM algorithm 
(simultaneous localization and map building) [2] permits 
to build a cartesian map of an outdoor environment with 
dead-reckoning sensors, laser range and bearing 
information. In the same way, and based on the SLAM 
algorithm, an extended Kalman filter (EKF) maintains an 
estimate of map features in addition to vehicle state, with 
the use of a millimeter wave radar [4]. An omnidirectional 
sensor can be use in connection with this kind of approach 
[3] [1]. The use of the Extended Kalman Filtering in the 
localization and mapping process set the problem of 
divergence linked to the dead-reckoning prediction used 
for the linearization. 

The second approach to manage metric maps is 
occupancy grid maps, which were originally proposed in 
[7] [8] and which have been employed successfully in 
numerous mobile robot systems. Occupancy grids are 
designed to estimate the occupancy of all cells in the 
environment. This type of representation is also used by 
Boreinstein in [9]. More recently Dieter Fox introduces in 
[10] a general probabilistic approach to concurrent 
mapping and localization. This method poses the mapping 
problem as a statistical maximum likelihood problem, and 
devises an efficient  algorithm for search in likelihood 
space. In the same way that previous approaches, the 
proposed paradigm in [10] addresses the problem of using 
occupancy grid maps for path planning in highly dynamic 
environments. This grid approach permits to solve the 
problem previously hightlighted to the EKF mapping 
methods. However, a major drawback of occupancy grids 
is caused by their pure sub-symbolic nature: they provide 
no framework for representing symbolic entities of interest 
such as doors, desks, etc [10]. 

The second category of map representation is the 
topological one. This approach consists in determining and 
managing the location of significant places in the 
environment along with an order in which these places 
were visited by the robot. In the topological mapping step, 
the robot can generally observes whether or not it is at a 



 

significant place. The definition of significant places can 
be linked for example to the notion of “distinctive places” 
in the Spatial Semantic Hierarchy proposed in [11], and 
the notion of “meetpoints” in the use of Generalized 
Voronoi Graphs proposed in [12]. This kind of method is 
interesting to use in complement with an occupancy grid, 
in order to take into account the semantic aspect. 

We propose a Simultaneous Localization and Map 
building paradigm based on a geometric approach. This 
paradigm takes into account the hypothesis of a non a 
priori knowledge. Our method is not based on the use of 
an Extended Kalman Filter but on a matching stage based 
on different selection criterion: the Hausdorff distance and 
the cumulated cartesian distance. In the first part we deal 
with the problem of the stereoscopic sensorial model 
construction. The second part is devoted to the localization 
stage. In the third part we propose a localization and map 
building paradigm based on multi-criteria approach for the 
matching stage and on the use of the recursive least square 
method for the primitive coordinates computation. Finally, 
we present our reconstruction experimental results 
obtained on a large indoor environment. 

 
II. Sensorial primitive 
 

The stereoscopic omnidirectional sensor put on our 
mobile robot SARAH is based on the rigid translation of 
an omnidirectional vision system SYCLOP used in our 
laboratory [3]. The SYCLOP system is composed of a 
conic mirror and a CCD camera (Figure 1). The rigid 
translation is been made thanks to two horizontal rails 
which allow a precise straight move in the horizontal 
SYCLOP sensor plan.  

d  d

X ro b o t

Yro b o t

Ra d ia l
stra ig h t
line

G ra y le ve l
se c to r o f
im a g e  1

A sso c ia te d
g ra y le ve l
se c to r o f
im a g e  2

C o nsid e re d
la nd m a rk

La nd m a rk e xe tre m ity p o ints

 

Figure 1 : Principle of the stereoscopic omnidirectional sensor 

Thus the system insures the acquisition of two 
omnidirectional images of the environment within 40 
centimeters of one another. To calculate the coordinates 
(x,y) of a point (corresponding to a vertical landmark like 
edges, corners …) it’s necessary to know the « landmark’s 
signature » in the two omnidirectional images. This 
signature is characterized by a radial straight line on each 
image: after a matching stage, these two radial straight 
lines allow to compute by triangulation the point 
coordinates in the robot’s reference. 

We take into account the characteristics of the 
considered lines primitives: they are radial and converge to 
the center of the cone. Then we have decided to work on 
pixels which are included in several concentric circles 
centered on the top of the cone. We work finally on one 
grey level circle computed with the mean of grey level 
pixels belongs of several circles. The mean value is 
computed in connection with radial directions. To extract 
the radial straight lines, we apply a one dimension Sobel 
gradient filter on the circle computed with this mean  [13]. 

The stereo sensorial model is obtained after a matching 
stage. This stage consists in associating a grey level sector 
(characterized from two radial straight lines) of the first 
omnidirectional image with its corresponding sector on the 
second image (Figure 3). Since the sectors don’t following 
one another in the same order on the two images, we have 
selected 4 comparison criteria for each sector (Figure 2): 
• inclination of the approximate straight lines 

corresponding to the set of sector gray level, 
• average of the gray level determined by the set of 

sector grey level, 
• standard deviation of the gray level determined by the 

set of sector grey level, 
• the geometrical criterion linked to the sector, which 

can described like a “pseudo epipolar criterion”, we 
can see than in Figure 4 where α is necessary inferior 
to β [13]. 
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Figure 2 : Global matching sector algorithm 

The merging of these “heterogeneous” criteria is based 
on the use of the Dempster-Shafer’s rules [13][15]. 
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Figure 3 : Segmentation and final sector matching for the two images 

corresponding to a stereoscopic acquisition 
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Figure 4 : Geometric constraints for the sector matching 

The final stage which allows us to obtain the sensorial 
model consists in computing the points coordinates by 
triangulation (1). 
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The stereo sensorial model obtained is composed of 
point primitives corresponding to a vertical landmark of 
the robot’s environment (Figure 5). 
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Figure 5 : Stereo sensorial model in two different environments (hall and 

corridor) compared with the real environment (theoretical model). 
 

We show on figure 5 a superposition of the sensorial 
model with a theoretical representation of the environment 
(with an a priori known map). The figure 5 allows to 
highlight the robustness of the stereoscopic sensorial 
model. 
 
III. localization approaches 
 

The next stage is the localization one: we can only 
update the environment map if the stereo sensorial model 

is matched with the previous merged stereo models. The 
localization stage can be declined like a matching of two 
set of points: the set of points of the stereo sensorial model 
and a set of points belonging to the environment map at a 
time t. The map will be constructed with the sensorial 
models obtained until time t-1. This problem is classical 
notably in stereo vision: it consists in finding the best 
matched configuration linked to a selection criteria like for 
example the Hausdorff distance [16]. 

The Hausdorff distance between two sets, 
A={a1,…,an} and B={b1,…,bn}, where ai, bj are points, is 
given by: 

)),(),,(max(),( ABhBAhBAH =  
Where 

 

baBAh BbAa −= ∈∈ minmax),(  
and  is the Euclidian norm. 
The function h(A,B) is called the direct Hausdorff 

distance from A to B. If h(A,B)=d, then each point of A 
must be within distance d of some points of B, and there 
also are some points of A that is exactly distance d from 
the nearest point of B. 

The Hausdorff distance H(A,B) is the maximum of 
h(A,B) and h(B,A), thus it measures the degree of 
mismatch between two sets, by measuring the distance of 
the point of A that is the farthest from any point of B and 
vice versa. 

In order to estimate a position which minimizes the 
Hausdorff distance, it’s necessary to calculate this distance 
for all possible positions of the robot (figure 6). To reduce 
the complexity of this stage, a reduction of computation is 
necessary. To do it, we use the dead-reckoning pose 
estimation. We obtain the pose and the error domain with 
the classical equations linked to the use of odometers [13]. 
In our matching problem, we determine a domain of 
possible absolute pose with an overcharge of the ellipse 
domain error which we assimilate as a circle. The radius of 
this circle is calculated with the length of the major axis of 
the ellipse error quantification.  

To compute the Hausdorff distance we manage a grid, 
representing the different possible positions of the robot 
(Figure 6). This grid includes the previous circle. For each 
(x,y) cells and for different possible values of angle (inside 
the interval given by dead-reckoning), we calculate the 
Hausdorff distance between points of the sensorial model 
and points of the environment map. Finally, the minimal 
Hausdorff distance gives the pose of the robot. 
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Figure 6 : Grid of possible position for the robot 

We have tested this pose estimation approach on 
several stereo acquisitions. We can note this method is not 
adapted for two reasons: 
- There are too few of points in the sensorial model 

(and also in the map) 
- The Hausdorff distance is very sensible to noise 

The Hausdorff distance gives good results with lot of 
points not blemished of noise: this does not correspond 
systematically to our work hypothesis. 

 
The most robust convergence criterion that we have 

kept for the matching algorithm is based on the Cartesian 
distance between each sensorial model point and the 
nearest one of the environment map. 

The principle of our localization method is finally as 
follows : 
• we consider 2 points in the sensorial model 
• we look for 2 points of the theoretical model 

corresponding to the 2 chosen points in connection 
with the Cartesian distance. 

• Lastly we have to calculate, for each remaining 
sensorial model point, the minimal distance which 
separates it from a point of the theoretical model 
(incremental constructed map). The cumulated 
distance (sensorial point-theoretical point) allows to 
choose the best position. The selection criterion 
permits to choose the final solution is then the 
minimum cumulated distance error. 

The first stage of this algorithm is strongly 
combinatorial. The first amelioration to reduce this 
complexity consists in using only the two points from the 
matching of an identical sector, which permits to reduce 
the number of possible couples to n. 
Moreover in order to reduce the complexity of this stage, 
we use also the position estimation and its associated error 
domain given by dead-reckoning. Then the amelioration of 
the initial matching algorithm consists in ejecting the 
combinations of sensorial points couples and theoretical 
points which generate a position out of the domain of 

possible positions. Finally, we obtain a good algorithm of 
localization (Figure 7). 
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configuration estimations of the robot 

 
IV. Map building approach 
 
The next stage consists in updating the environment map 
with new observations. This stage is linked to the previous 
one: the fusion of the sensorial model with the map can be 
made only if the matching stage is achieve. The updating 
stage consists in the management of two cases: (1) merge a 
sensorial primitive with a map one (2) initialize a new 
primitive in the map. 
Then it is necessary to merge information of the sensorial 
model acquired at the step n with the map built with n-1 
previous acquisitions. 
 
IV.١ - The fusion stage 
 
The difficulty of this stage is linked to an important 
number of points which can be erroneous. The position of 
a sensorial model point is obtained from the information of 
the two angles (Figure 1): if only one observation is 
corrupted with an error, the position of the point is false 
even if the second observation is valid. It is why we 
decided to merge the two angles and not directly the 
information of point. 
In this optic, we associate the angular errors committed by 
the two sensors with two functions. We get thus with 
matching functions the two Basic Probability Assignment 
(B.P.A.) associated to the fusion of an observation with an 
existing point of the map (Figure 8). 
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Figure 8 : Matching functions for the point fusion stage 
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Figure 9 : BPA of the fusion area 

These two B.P.A. are merged with Dempster-Shafer [15] 
rules to decided if the fusion is possible or not (Figure 9). 
At this level, the problem is to math the s points of the 
sensorial model with p points of the theoretical model 
(environment map). To do it we use the Dempster–Shafer 
theory: for each point of the sensorial model Si, we apply 
the following algorithm: 
- The frame of discernment Θ is composed by the p points 
of the theoretical model and also by an element noted * 
which means that the point Sj cannot be matched (it’s a 
new point). So : Θ={P1,P2,…,Pp,*} 
- The matching criterion is the fusion of the two 
differences of angle. 
- For each point p of the map, we compute: 

• mi( iP ) the mass associated with the proposition 
“The point Pi is matched with the point Sj” 

• mi( iP ) the mass associated with the proposition 
“The point Pi is not matched with the point Sj” 

• mi(Θi) the mass represented the ignorance 
concerning the point Pi 

After the treatment of all points Pi, we have p triplets : 
m1( 1P )  m1( 1P ) m1(Θ1) 
m2( 2P ) m2( 2P ) m2(Θ2) 
…   …   … 
mp( pP ) mp( pP ) mp(Θp) 

 We compute the Dempster rule of combination on 
these triplets and we get mj(P1), mj(P2), …, mj(Pp), mj(*) 
and mj(Θ) where : 
• mj(Pi) is the mass on the proposition “The point Sj is 

matched with the point Pi” 
• mj(*) is the mass on the proposition “The point Sj is a 

new point” 

• mj(Θ) is the mass on the proposition “We don’t know 
anything about the matching of the point Sj” 

In this matching case, Gruyer [14] shows that we can 
obtain these condensed formulas: 
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We compute these values for each point of the sensorial 
model, and we obtain the following table: 
 
m1(P1) … m1(Pi) … m1(Pp) m1(*) m1(Θ) 

…  ...  ... ... ... 
mj(P1) ... mj(Pi) … mj(Pp) mj(*) mj(Θ) 

…  ...  ... ... ... 
ms(P1) … ms(Pi) … ms(Pp) ms(*) ms(Θ) 

To correctly match the points of the sensorial model 
with the points of the map, we apply the following 
algorithm: 
- We find in the previous table, the maximum value t, 

this value represent “the sensorial point t is matching 
with the point q” or “the sensorial point t is a new 
point”. 

- We suppress the line of the t point in the table, and if 
is not a new point, we suppress the column that 
contain the q point. 

- We reiterate this algorithm until all the theoretical 
points are unmatched. 

 
IV.٢ - The incremental map building 
 

Our incremental map building algorithm is based on 
the exploitation of the angular measures. The data which 
allow to estimate the landmark positions to an acquisition 
n are, with 1)2( −×= nk  and 1+= kk cc θθ : 

• The two positions of observation T
kkk cycxc ][ θ  

and T
kkk cycxc ][ 111 +++ θ  

• The two azimuth angles ),( 1
i
k

i
k +φφ  of the considered 

landmarks i in the robot’s reference. 
The coordinates (xbi,ybi) of the considered landmark i in 
the map reference are directly got from the following 
equation (Figure 10): 
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Figure 10 : Position estimation of a landmark 

This equation system is overdetermined. To estimate the 
parameters (xbi, ybi) incrementally we use the recursive 
least squares method: 
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where ak is the state vector, yk the observation vector and 

xk represents the known parameters. To apply the 
recurrence equations (3) it is necessary to express the 
equation (2) under the following form : 
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which gives us the equation (5) : 
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where αk
i = θck + φk

i  
Moreover, the recursive least squares method allows us 

to obtain an estimation of the error domain associated with 

a landmark position [ ]xb ybi i T
. 

Then, the problem of noisy points is taken into account 
with this approach. When a point has been observed only 
one time and no more observed in the next acquisitions, it 
is suppressed automatically. 

 

 
Figure 11 : Map build after 8 acquisitions 

 
Figure 12 : Map built after 20 acquisitions 

Finally, we obtain a robust theoretical environment at 
the n stage, this is important for localization at stage n+1. 
Figure 11 and Figure 12 present the results of our map 
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building method. In the Figure 11, the map is obtained 
after 8 acquisitions, the Figure 12 shows the result of this 
algorithm in a corridor after 20 acquisitions (for more 
visibility we have removed the segment between points). 
We can note a few drift in this second example, because 
the trajectory of the robot is linear, and the environment is 
symmetric and repetitive.  

 
Conclusion 

 
We have developed a simultaneous localization and map building 
system based on a cooperation between a stereoscopic 
omnidirectional perception system and a dead-reckoning system. 
We have solved the preponderant problem residing in the robust 
sensorial model construction, using two exteroceptive conical 
sensors. The optimization of the robustness is obtained with the 
fusion of complementary treatments. The method allows us to 
merge several heterogeneous discriminate criteria. This approach 
takes into account the notion of weighting for each elementary 
treatment. We have developed a robust absolute localization 
algorithm based on the matching of the stereoscopic sensorial 
primitives with the environment map. We have integrated in the 
matching stage a coherence position test linked to the dead-
reckoning estimation, which permits to increase the precision and 
the robustness of the robot’s configuration estimation (a mean 
accuracy of 10 cm for the position). The matching stage based on 
the Dempster-Shafer theory allows to estimate the robot’s pose 
and to merge the sensorial primitives with those included in the 
map. The use of Dempster-Shafer theory and the recursive least 
squares method with the previous localisation algorithm gives us 
a coherent construction of the environment field. We can note 
that our localization and map building paradigm generates a few 
drift, even on long path. On several stereoscopic acquisitions 
made in an indoor environment, we obtain a coherent 
incremental map and an important precision on the considered 
primitives. 
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