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Abstract

This paper presents a system of absolute localization
based on the stereoscopic omnidirectional vision. To do it
we use an original perception system which allows our
omnidirectional vision sensor SYCLOP to move along a
rail. Thefirst part of our study will deal with the problem
of building the sensorial model with the help of the two
stereoscopic omnidirectional images. To solve this
problem we propose an approach based on the fusion of
several criteria which will be made according to
Dempster-Shafer rules. As for the second part, it will be
devoted to exploiting this sensorial model to localize the
robot thanks to matching the sensorial primitives with the
environment map. We analyze the performance of our
global absolute localization system on several robot’s
elementary moves, in different environments.

|.Introduction

The analysis of the navigation problem given by
Leonard et Durrant-Whyte : “Where am |”, “Where am |
going”, and “How should | get there” [5], shows that
localizing the robot in its evolution environment
constitutes a prerequisite step to any decision making.

Localization methods which can satisfy the constraints
imposed by the navigation, are based on locating artificial
beacons. This kind of localization system is generaly
employed for industrial applications as for example the
navigation system developed by Durrant-Whyte [7] for an
Autonomous Guided Vehicle which transports containers.
These methods are fast and reliable, but unfortunately they
lack flexibility and modularity because it is necessary to fit
out the robot's evolution environment.

Another category of method consists in referencing
directly on characteristic elements of the robot’s evolution
environment. Indeed, these solutions offer a great
modularity and alow the robot to localize itself in
accordance to the landmarks. This kind of localization is
generally founded on a matching stage between a sensorial
model and a theoretic map of the environment. The
perception systems used in that case are often the vision
systems and the range finding ones. Thus, Gonzalez in [8]
determines the absolute position of its robot by using the

line segments as sensorial primitives. These are obtained
thanks to a rotating laser rangefinder. In [5], Leonard
develops a method of dynamic localization based on the
location of “geometric beacons’, which are detected by a
belt of ultrasonic sensors. These geometric beacons are
determined thanks to regions of constant depth (RCD).

Krotkov [1], and Atiya [2], use a CCD camera to detect

vertical lines of the environment as natural beacons.

Similarly Yagi uses an omnidirectional vision system to
develop navigation and environment map building
methods [3][4]. We can notice that the robustness of this

kind of localization methods is mainly linked to the
matching stage. The more precise and rich information the
sensorial model will give, the more robust the matching

stage will be. That is why we have worked on an original

method of sensorial model building based on the use of a
stereoscopic omnidirectional perception system.

The first part of this paper presents the principle of our
stereoscopic  omnidirectional perception system. The
second part will deal with our sensorial model building
method using the multicriteria fusion, made according to
Dempster-Shafer rules. Our absolute localization method
will be presented in the last part. In the conclusion we will
analyze the experimental results reached with our maobile
robot SARAH.

I1.Description of the ster eoscopic system

The stereoscopic omnidirectional sensor put on our
mobile robot SARAH is based on the rigid trandlation of
the omnidirectional vision system SYCLOP used in our
laboratory [6]. The SYCLOP system is similar to the
COPIS one used by YAGI [4] and is composed of a conic
mirror and a CCD camera (Figure 1). It allows us to detect
al the vertical landmarks of the environment thanks to a
dimensional projection.

The rigid translation has been made thanks to two
horizontal rails which allow a precise straight move in the
horizontal SY CLOP sensor plan. Thus the system insures
the acquisition of two omnidirectional images of the
environment within 40 centimeters of one another. The
distance between these two shots has been determined
experimentally by making a compromise between



congestion and precision in the sensoria primitive
determination. The sensor is put on the rails thanks to a
stepping motor and a rack.

Figurel: Igrincipleofthe
stereoscopic omnidirectional sensor

Figure2 : determination of the

sensorial primitives

If for each point we know the two radial straight lines
generated on each cone igure 2), we can calculate the
position of the vertical landmarks (edges, corners,
doors...) in the robot’ s reference.
Three treatments are necessary to get these points :

the radial segment of the two images

the matching of the sector thus found

the calculation of the coordinates of the points found

[11.Theradial segmentation

We want to treat the radial straight lines corresponding
to the vertical beacons. The lines being all radia and
generally distributed homogeneously on 360 degrees, we
take into consideration five concentric grey level circles
whose average is then made. We obtain thus one grey

level curve for each image (Figure 3).
” Grey level

Point Number

Segmentation

Modified Gradient

Duda-Hart
(Grey level)

Fusion
(Dempster -Shafer)

v
Figure4 : Globa segmentation agorithm

It is then necessary to treat this signal of grey level to
extract the great variation which corresponds to sector
changes. That's why, we have tried to develop an
approach of the image lighting conditions as independent
as possible. This condition is necessary for an identical
treatment of the two images. We propose a segmentation
method based on the fusion of two complementary
treatments (Figure 4). The fusion is made thanks to the
combination rules of the Dempster-Shafer theory [9].

[11.1 - Segmentation with the gradient method

We apply a gradient vector on the grey level curve. To
limit the noise importance we have decided to use a vector
of dimension 7 : [-2 -2 -1 0 1 2 2]. The problem of this
classical approach is that a change of sector generates a
multitude of radial straight lines. That's why we have
developed a post-treatment to filter the gradient curve : on
the curves we look for the local maximum and minimum
and set al the other points at zero. During the
thresholding, this treatment allows to take into
consideration only the characteristic points in the sector
building.

In spite of a better detection of the radia straight lines,
we can note the apparition of quite a big number of noisy
straight lines. So, it seems necessary to plan another
complementary treatment.

[11.2 - Duda-Hart segmentation

The Duda-Hart agorithm [10] is mainly used as a
segmentation method on a set of points as in rangefinding
data for example [11]. It consists in grouping recursively
sets of lined up points in connection with distance criterion
point-segment. The algorithm is stopped when there are no
points left to check the distance condition. By applying
this method to our grey level curves, we take into
consideration the grey level continuity criterion (Figure 5).
This criterion is complementary to the first one, based on
the breaking between the grey level ranges.

Grey level
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Figure5 : Duda-Hart algorithm applied to a grey level curve

We must note a few points concerning this criterion :
Contrary to the gradient method, there isn't an
important number of radial straight lines for a
separation between two sectors.

When a radial straight line (breaking point on the
curve) is detected by this algorithm, its existence must
be validated with the gradient criterion. On the
contrary, if this algorithm has detected no straight line,
thereis a very great probability that none exists.

The lighting conditions have little influence on the
number of detected lines, contrary to the gradient
(threshold problem).

The next step consists in

complementary methods.

merging these two



I11.3 - Segmentation data fusion

The fusion of the previous methods consists in solving two
problems :
Finding an automatic threshold method for the two
treatments.
Merging the two types of information.

Using the Dempster-Shafer rules [9] will allow us to
solve these two problems. Then we consider thef; function
corresponding to the absolute value of the gradient and the
f, function corresponding to the Duda-Hart algorithm. For
each point of the grey level curves, the f, function will be
defined as equal to zero for the lined up points and equal
to the distance breakpoint-segment which has created the
division of a set of pointsinto two segments.

We then try to calculate a minimum value under which
no radial line can exist and a maximum value above which
a straight line can exist. The further the value of a point
moves from the average of all the points, the more
probable it is to be a sector separation according to
Dempster-Shafer. As the standard deviation represents the
average deviation in relation to the average, we have
decided to center the two curves of the value
“Average+standard deviation” and to work on the
following interval :

[Average ; Average + (2~ standard deviation) ]

Then we reduce this interval to [0;1] so that all the
points from the two curves could be represented in this
“ambiguity window”. We have given the value O to all the
points situated below this interval and the value 1 for all
the points above.
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Figure6 : Orthogonal sum
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Figure7 : Segmentation
obtained with the fusion

Our frame of discernment is thus composed of two
elements : “YES' and “NO" corresponding to those
assertions: - “yes, aradial straight line exists’

- “no, aradial straight line doesn’t exist”

So, we can write the following 4 Basic Probability
Assignment (B.P.A.) :

my(YES) = f; my(YES) = f, (1)

my(NO) = 1-f; mp(NO) = 1-f;

We can then perform the combination calculation
thanks to the Dempster-Shafer rules [9] which now allows
to calculate the conflict coefficient between our two
elements of the frame of discernment :

k= m(YES).my(NO)+ my(NO).my(YES) 2

If k<1 the conflict is not complete and the combination
of belief functions (figure 6) for each b element of the
frame of discernment is given by (Figure 6):

m A m(p) = 2Im(0) ©

To determine the existence of radial straight lines
(Figure 7), we take all the points whose B.P.A. for the YES
is superior to the NO.

V. Sector matching

In our problem, the matching stage consists in
matching the different grey level sectors detected in the
two images with a maximum of robustness. Here again we
use Dempster-Shafer for the fusion of the different criteria
(Figure 8).
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Figure8 : Global matching sector algorithm

Because the two cones of the perception system are far
from one another, the vertical landmarks cannot appear
identically on the two images. Indeed some sectors can
appear on one image but not on the other because of
occultation problems or because of the difference of the
two segmentations. Thus the sectors will not follow one
another in the same order on the two images. It is thus
necessary to find more significant matching criteria than
the order of apparition. To solve this problem we have
selected 4 comparison criteria for each sector :

The inclination of the approximate straight lines of the

set of sector points.

The average of the grey level sector.

The standard deviation of the grey level sectors.

The geometrical criterion of the sector.

IV.1- Matching criteria determination

The first matching criterion is calculated from the grey
level curves. It consists in approximating the set of points
corresponding to each sector thanks to a least square line.
We have noted that the orientation of this line segment
(Duda-Hart segmentation of the Figure 5) varied little
between the two images for a given sector : this constitutes
experimentally a good matching criterion.

The second chosen criterion is the average of the sector
taken on the grey level curve.

The third one is the standard deviation of each sector
also taken on this curve. It is complementary to the second



one as it represents the dispersion around the average.

The last criterion is the geometrical one. We consider
the plan containing the base of the two cones A and B with
aradius R, separated by the distance d. We suppose this
plan to be paralel to the one on which the robot moves.
We consider that the robot’s center of reference is situated
on the center of the cone A and that the two cones are
lined on the axis Ox (Figure 10).

Two cases can be contemplated : the considered
landmark is detected in the same circle quarter on the two
images but with two different angles, or in adjacent
symmetrical circle quarters (Figure 10). Indeed a vertical
landmark seen of the right by the left sensor is obligatorily
seen on the right by the right sensor. Moreover the angle
made each side of the sector on the left cone must be
superior to the angle of each side corresponding to this
sector on the right cone (Figure 10).

IV.2 - Matching criteria fusion

Our fusion method for this problem is the same as the
one used for segmentation : Dempster-Shafer's method.
The matching of the sector of an image with another sector
must be managed with a positive and negative answer.
That's why our discernment frame is made of two elements
“YES® for “yes the two sectors must be matched” and
“NO” for “no the two sectors must not be matched”. By
considering four sensors corresponding to the four
matching criteria, we can establish the B.P.A. of each
sensor for the two elements of the frame of discernment.
To know if the g sector of an image must be matched with
the sector | of the other image (Figure 10), we must set up
the matching function between the output of our sensors
and the B.P.A. of each element in the frame of
discernment (Figure 9).

The first three functions correspond to the difference
of the first three sensors between the g and the | sector.
The last function is given by the geometrical criterion :

If the g sector can be geometrically matched to the |

sector, the B.P.A. for “ YES' isequal to 0.5,

otherwise the discernment frame is equal to 0.
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Figure9 : Matching functions for the sector matching stage

We can then calculate the B.P.A. and the k conflict
coefficient between the two elements of the frame of

discernment. If k<1 then the conflict is not complete and
the combinion of belief functions for each b of the frame
of discernment is given by :

mA m A m Am(b) = nl(b)-mz(ti}rlr}(b)w(b) (4)

V.3 - Global matching sector algorithm

We know that the geometrical criterion reduces the
research of the sectors which can be matched, but also that
a sector can be matched only once. That's why the global
matching algorithm is composed of three treatments
(Figure 10) :

- First, we calculate the matching of the sectors which
have the highest geometric criterion : those of the A-I
zone. They must then be matched with the sectors of
the B-I zone.

Secondly, we try to match those of the B-11 zone with

the sectors of the A-Il zone.

Lastly, the sectors of the A-Il zone must be matched

with the remaining ones of the B-I zone.
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Figure 10 : Geometric constrainsts for the sector matching

In order not to commit matching errors, we keep a
solution only if it is unique, otherwise no decision is taken.
In that case the algorithm continues with the other sectors.
What we call the unique solution is here the maximum
solution superior to the probability 0.5 and distant from
another point of at least 0.1. For each matching, we repeat
this stage. Indeed a matching can alow to remove
previous matching ambiguities. We use the same paradigm
for the three treatments.

Figure 11 : Segmentation and final sector matching for the two images
corresponding to a stereoscopic acquisition

V.Landmark position deter mination

Once the sectors have been matched, we have only to
calculate the points of the segments we represent. To do it,



we know the orientation angle of straight lines defining a

sector and the distance separating the two cones. The

coordinates of all the points in sensor references are

calculated with :
d” tan(p)

__d tanp) ~d’tanp)’ tan@) (5)
tanp) - tan@)

tanp) - tan@)
V1. Localization algorithm
V1.1 - The considered primitives

We get a sensorial model where two types of sensorial
primitives can be considered :

The points which characterize each vertical landmark

The segments which characterize a horizontal

landmark (separated by 2 vertical ones)

To localize the robot, therefore we have two
possihilities for the matching algorithm :

Matching the points of the sensorial model with the

points listed in the theoretical environment map,

Matching the segments of the sensorial model with the

theoretical map segments

Theoreticaly each couple of matched sectors must
represent a horizontal landmark. We can see that in some
cases it is not checked. For example, the vacuum (door
opening, corridor ...) is characterized by a segment. We
can thus say that if we consider segments as sensoria data,
more horizontal landmarks will appear. We can add
another case where a couple of sector represents a set of
horizontal landmarks. Finaly for certain angular
configurations an important error can appear on a segment
orientation coefficient. The accumulation of al these
errors can in some cases create a sensorial model which
can't be exploited from the segment point of view for the
matching algorithm.

That’s why we have decided to consider more robust
geometric primitives than the segments, namely the points.
Indeed when a segment is greatly erroneous, its ends
generally represent exploitable points. So we have
developed a matching algorithm of the sensorial model
with the environment map based on the taking into
account of points.

V1.2 - Matching algorithm

The most robust convergence criterion that we have
kept for the matching algorithm is based on the Cartesian
distance between each sensorial model point and the
nearest one of the environment map.

By superposing the sensorial model experimentally got
with the environment map we can notice a relatively
important precision in the determination of the points
coordinates (igure 13). So, we use this superposition
directly to localize the robot from the translation and the

rotation obtained with the matching algorithm. The
principle of our localization method is finally as follows :
we consider 2 points of the sensorial model
we look for 2 points of the theoretical model
corresponding to the 2 chosen points in connection
with the Cartesian distance.
finaly, we calculate the distance separating the
sensorial model remaining points from the nearest
theoretically model points. This constitutes our fina
selection criterion.

The first stage of this agorithm is strongly
combinatorial. The number of possible couples of pointsis
equal to n(n-1)/2 for n points of the sensorial model. To
reduce this complexity, we have decided to use only the
two points from the matching of an identical sector, which
permits to reduce the number of possible couplesto n.

To find the theoretical model couple which best
corresponds to the sensorial model, we calculate the
distance which separates these points. We then compare
the two distances (sensorial and theoretical) for all the
couples of points of the theoretical model. Once a solution
has been found, we calcul ate the rotating angle which must
be applied to the set of remaining points.

Lastly we have to caculate, for each remaining
sensorial  model point, the minimal distance which
separates it from a point of the theoretical model. The
cumulated distance (sensorial point-theoretical point)
alows to choose the best position. Our selection criterion
of the final solution is then the minimum cumulated
distance error.

VIl.Experimental results

To test the robustness of our localization algorithm, we
have executed it on several sensorial acquisitions made in
two different environments (Figure 12). The acquisitions
are made when the robot has stopped, with our
stereoscopic omnidirectional sensor shown on Figure 12.

Figure 12 : Our stereoscopic omnidirectional sensor and the two
experimental environments



Figure 13 and Figure 14 presents the results of our
localization method showing the final matching of the
environment map with the stereoscopic sensorial model.
We can note on the one hand that the preciseness of the
localization method is great (error curve on Figure 15) and
on the other hand that the error criterion for distance is
highly discriminating since our method has given a correct
matching for the 13 realized acquisitions.

Sensorial model / | W |
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Figure 13 : Results obtained with our localization method on two
stereoscopic acquisitions
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Figure 14 : Example of acquisition, sector matching and localization
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Figure 15 : Orientation and Cartesian error obtained on 11 absolute
configuration estimation of the robot

VI1Il.Conclusion

We have developed a localization system based on the
exploitation of a stereoscopic omnidirectional perception
system. We have had to solve the main problem residing
in the building of a robust sensorial model from two
exteroceptive conical sensors. The optimization of the
robustness is reached thanks to the information fusion

from complementary and elementary treatments. We have
used the fusion method from the Dempster-Shafer theory.
It has allowed us to take into account the notion of
weighting for each elementary treatment. We have tested
our building method on several acquisitions in an indoor
environment, which has allowed us to put into light the
interest of our approach whatever the type of
environment, we reached an important precision on the
sensorial considered primitives. We could thus develop a
robust absolute localization algorithm by matching the
stereoscopic sensorial model with the environment map.
This method allows to determine the robot’s configuration
with an important precision (an average of 10 CMS for the
position) and mostly with very little falure rate. The
important number of significant data of the stereoscopic
sensorial model got on an acquisition alows us to
contemplate interesting prospects in connection with the
environment incremental modelization in the case of an
evolution in unknown environment.
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